
From DevOps to
GitOps
Supercharging Your
Kubernetes Workload
Deployments
Dan Skaggs

https://tinyurl.com/skaggs-ato24

This Talk…
Is *not*

Is
• Introduction to GitOps / Infrastructure as Code (IaC)
• Discussion of software engineering processes useful to IaC
• Discussion of tooling used in the GitOps process
• (Hopefully) Thought-provoking

• A Kubernetes master class
• A step-by-step “How To” session

Who Am I?

• Software engineer turned manager
• US Air Force veteran
• Life-long geek
• I *LOVE* automating things
• Very interested in self-hosting

https://dan.skaggsfamily.us

https://www.linkedin.com/in/danskaggs/

https://dan.skaggsfamily.us
https://www.linkedin.com/in/danskaggs/

GitOps?!?
What is it and why should I care?

Why GitOps

• Next evolution in automation
• Consistency and repeatability
• One source of truth for configuration of your workloads
• Transparent history of changes
• Peer reviews for quality control and consistency*
• Enforced approval workflows*
• Easily roll back bad changes

* with additional tooling

Deploying

Not *That* Flux

Automates synchronizing cluster state to config files in your configuration source

Alternatives

Does not cover build / test phases

Reconciles configuration stored in repo vs the state of the cluster to
apply changes

https://fluxcd.io/flux/components/

Organizing Your Repo

Simple Repo Example

• Perfect for learning,
experimenting, and testing

• Will get unwieldy as more
workloads are added

MonoRepo:
Folder Per Environment

• Good for small to mid-sized teams
• All configuration is in one place and

easy to trace
• CODEOWNERS file important for

approval workflow
• Reconciliation performance can suffer

as repository size increases

Multi Repo:
Repo Per Environment

• Easier to restrict permissions for each
environment

• Promoting changes between
environments requires more effort

• Able to scale to many environments
without sacrificing performance

Path to GitOps (Hernandez) p.28

So, Software Engineering…

Infrastructure as Code with
Allows parallel distributed updates

Commit messages provide a detailed audit
trail of changes

Encourages collaboration and approvals
through pull requests*

Allows system documentation to live with
configuration files

* with GitHub, Gitlab, etc

Branching
!!Allows work to happen in a space separate from

the main code line
Allows others to continue their work without being
affected by your work Big Boss

Sally Brenda Nicholas

Pull Requests
• Invite collaboration between engineers to

improve quality of solution
• Learning opportunity for all involved
• Key component in change approval

workflow
• Feedback *must* be given and taken in a

spirit of wanting to make solutions better
• Toxic comments, bullying, etc must not

be tolerated

Code Owners
Specifies rules for who must approve changes to various
parts of the repository

Can be individual accounts or groups

Combined with branch protection settings (GitHub feature), provides
automatic required approvals for pull requests based on changed files

Supported by most Git hosting platforms (GitHub, BitBucket, GitLab, etc)

Rolling Back
• Errors happen (we’re human)
• Not the same as deployment rollback on failure
• Git revert allows going back in time to the last stable version
• Bad commit still in history for reference
• Highly suggested to “Squash” your PR commits on merge
• Next reconcile reverts to last good configuration

X

Antipatterns and Pitfalls

• Don’t use long-lived branches for environments
• Don’t store unencrypted secrets in your repo(s)
• Don’t mix infrastructure deployment with application

deployment
• Don’t deploy resources by hand with kubectl; trust your IaC
• Beware of monorepo performance as your cluster size grows
• Configure permissions to your repos early and review often

Next Steps
Get “DRY” with Overlays Combine All the Above & Profit
• Allows reuse of configuration

between clusters to improve
consistency

• Builds a hierarchical view of how
any given cluster is configured

• Larger mental model to
understand

• Not as easy for less experienced
personnel to work with

• Understand which approach is
right for your organization

• Don’t try to eat the entire
elephant at once

• Find meaningful progress
measurements

• Never stop learning

Acknowledgements
David Young (aka The Funky Penguin)
https://geek-cookbook.funkypenguin.co.nz/

Flux
https://fluxcd.io

“The Path to GitOps”
Christian Hernandez
https://developers.redhat.com/e-books/path-gitops

https://geek-cookbook.funkypenguin.co.nz/
https://fluxcd.io
https://developers.redhat.com/e-books/path-gitops

